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Abstract
The pfaffian solution of a semi-discrete BKP-type equation is obtained at first,
then utilizing the source generation procedure, this equation with self-consistent
sources (BKPESCS) is presented and its pfaffian solutions are derived. Finally,
a bilinear Bäcklund transformation for the semi-discrete BKPESCS is given.

PACS numbers: 02.30.Ik, 02.30.Ks, 05.45.Yv

1. Introduction

Soliton equations with self-consistent sources (SESCSs) have an important role in many
fields of physics, such as hydrodynamics, plasma physics, solid-state physics [1–3], and they
can describe the interactions between different solitary waves. For example, the KPESCS
describes the interaction of a long wave with a short-wave packet propagating along the x, y

plane at an angle to each other [4], and the nonlinear Schrödinger ESCS can describe the
nonlinear interaction of an electrostatic high-frequency wave with the ion acoustic wave in
plasma [1, 3]. Hence it has become an interesting problem to study how to propose and
solve SESCSs. There exist several ways to study SESCSs, such as the inverse scattering
transform, the Darboux transformation and Hirota’s method (see [5–15]). Recently, a new
source generation procedure [16] has been found to construct and solve SESCSs based on
the bilinear method. (This new method was called source generalization procedure at first.
While considering the fact that the procedure enables one to introduce sources in integrable
equations, we renamed the procedure as source generation.) There are mainly three steps
involved in the procedure:
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(1) to express N-soliton solutions of a soliton equation without sources in the form of
determinant or pfaffian with some parameters, i.e., arbitrary constants ci,j .

(2) to introduce the corresponding determinants or pfaffians with some new parameters, say,
arbitrary functions of one independent variable, e.g. ci,j (t).

(3) to seek coupled bilinear equations whose solutions are just these new generalized
determinants or pfaffians. The coupled system is the so-called SESCS.
The source generation procedure has been successfully applied to some continuous and
discrete AKP-type equations[16–18].

On the other hand, it is known that a new hierarchy of soliton equations[19] which is called the
BKP hierarchy was discovered by Date et al in 1981, and BKP-type equations have been deeply
investigated [20–22]. These kind of equations have a characteristic, i.e., their bilinear forms
have solutions which can only be written in a pfaffian form; meanwhile, as for continuous
AKP-type equations, their bilinear forms have solutions of the determinantal form, including
Wronskian-type and Grammian-type. Based on this difference, it is natural to try to research
BKP equations with self-consistent sources, through the source generation procedure. Hence
a (2+1)-dimensional SK ESCS

9ut + uxxxxx + 15(uxuxx + uuxxx) + 45u2ux − 5
∫ x

−∞
uyydx

− 15

(
uuy + ux

∫ x

−∞
uydx + uxxy

)
=

K∑
j=1

(ϕj,xxψj − ϕjψj,xx), (1)

ϕj,y = ϕj,xxx + 3uϕj,x, j = 1, 2, . . . , K (2)

ψj,y = ψj,xxx + 3uψj,x, j = 1, 2, . . . , K, (3)

was obtained in [16], and the solution of the pfaffian form to system (1)–(3) was also given. The
(2+1)-dimensional SK ESCS is an integrable coupled generalization of the (2+1)-dimensional
SK equation. If we make a suitable choice, the (2+1)-dimensional SK ESCS can be reduced
to the (2+1)-dimensional SK equation, and its solution is also transformed into the pfaffian
solution of the (2+1)-dimensional SK equation. Besides, if we set uy = 0, ϕj,y = ψj,y = 0,
the above system is reduced to the following (1+1)-dimensional SK ESCS:

9ut + uxxxxx + 15(uxuxx + uuxxx) + 45u2ux =
K∑

j=1

(ϕj,xxψj − ϕjψj,xx), (4)

ϕj,xxx = −3uϕj,x, j = 1, 2, . . . , K (5)

ψj,xxx = −3uψj,x, j = 1, 2, . . . , K. (6)

What has been mentioned above is just a continuous case concerning BKP-type equations.
However, there has been no literature on BKP-type ESCS in discrete cases, as far as we are
concerned. So it would be interesting to consider whether it is feasible to study discrete or
semi-discrete BKP-type ESCS. The purpose of this paper is to construct a semi-discrete BKP-
type equation with self-consistent sources, applying the source generation procedure. The
semi-discrete BKP-type equation is given by [23]

un+1,y −un,y = un+1,xx + un,xx + (un+1,x + un,x + 1)(un+1,x − un,x)− 1
2 (eun+2−un − eun+1−un−1),

(7)
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where the subscripts x and y denote differentiation with respect to the variables x and y,
respectively. Applying the dependent variable transformation

un = ln
τn+1

τn

,

equation (7) can be transformed into the bilinear equation[(
Dy − D2

x − Dx − 1
2

)
e

1
2 Dn + 1

2 e
3
2 Dn

]
τn • τn = 0, (8)

where D is the Hirota bilinear operator [24]

Dm
x f (x) • g(x) = ∂m

∂sm
f (x + s)g(x − s)|s=0, m = 0, 1, 2, . . . ,

and

exp(δDn)f (n) • g(n) = f (n + δ)g(n − δ).

This paper is organized as follows. In section 2, a pfaffian solution of the semi-discrete
BKP-type equation is found. The semi-discrete BKPESCS is proposed through the source
generation procedure, and its pfaffian solution is derived in section 3. Besides, a bilinear
Bäcklund transformation for the semi-discrete BKPESCS is obtained in section 4. Finally, the
conclusion and discussions are given in section 5.

2. A pfaffian solution of the bilinear equation (8)

In this part, we give a pfaffian-type solution of equation (8). The pfaffian-type solution has
the form

τn = pf(1, 2, . . . , 2N)n = pf( • )n, (9)

where the pfaffian entries are defined by

pf(i, j)n = cij +
−1∑

k=−∞
[ϕi(k + n + 1)ϕj (k + n) − ϕi(k + n)ϕj (k + n + 1)],

i, j = 1, 2, . . . , 2N, (10)

with cij = −cji being a constant and ϕi(m) = ϕi(m, x, y) satisfying the differential–difference
formulae

∂ϕi(m)

∂x
= 1

2
[ϕi(m + 1) − ϕi(m − 1)], (11)

∂ϕi(m)

∂y
= 1

4
[ϕi(m + 2) − ϕi(m − 2)] +

1

2
[ϕi(m + 1) − ϕi(m − 1)]. (12)

Before we prove that τn satisfies equation (8), we introduce new pfaffian elements defined as
follows:

pf(dm, i)n = ϕi(m + n), pf(dm, dl)n = 0, m, l ∈ Z, 1 � i � 2N.

Then we get the following formulae according to [24]:

τn+1 = τn + pf(d0, d1, • )n, τn−1 = τn − pf(d−1, d0, • )n,

τn+2 = τn + pf(d0, d1, • )n + pf(d1, d2, • )n,

∂τn

∂x
= 1

2
pf(d−1, d1, • )n,

∂τn+1

∂x
= 1

2
pf(d0, d2, • )n,

∂2τn

∂x2
= 1

4
[pf(d−1, d2, • )n + pf(d0, d1, • )n − pf(d−2, d1, • )n − pf(d−1, d0, • )n],
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∂τn

∂y
= 1

4
[pf(d−2, d1, • )n + pf(d−1, d2, • )n− pf(d−1, d0, • )n

− pf(d0, d1, • )n] +
1

2
pf(d−1, d1, • )n.

Substituting the above results into equation (8) yields the pfaffian identity

pf(d−1, d0, d1, d2, • )npf( • )n − pf(d0, d1, • )npf(d−1, d2, • )n

+ pf(d0, d2, • )npf(d−1, d1, • )n − pf(d1, d2, • )npf(d−1, d0, • )n = 0.

The above pfaffian identity can be proved by applying the following pfaffian identity [24]:

(a1, a2, a3, a4, • )( • ) − (a1, a2, • )(a3, a4, • )

+ (a1, a3, • )(a2, a4, • ) − (a1, a4, • )(a2, a3, • ) = 0.

Therefore τn in (9) is a pfaffian solution of equation (8). Here the function τn is only a formal
solution, and for application of the pf(i, j)n in (10), we can take

ϕi(m) =
(

1 + pi

1 − pi

)m

exp

{(
1

1 − pi

− 1

1 + pi

)
x +

(
1

(1 − pi)2
− 1

(1 + pi)2

)
y

}
,

where each pi is a constant satisfying pi > 1, then the N-soliton solution of equation (8)
can be obtained. Here, if we choose N = 1, c12 = 1, we get the one-soliton solution of
equation (8):

τn = 1 +
p1 − p2

p1 + p2

(
1 + p1

1 − p1

)n (
1 + p2

1 − p2

)n

exp

{(
1

1 − p1
− 1

1 + p1
+

1

1 − p2
− 1

1 + p2

)
x

+

(
1

(1 − p1)2
− 1

(1 + p1)2
+

1

(1 − p2)2
− 1

(1 + p2)2

)
y

}
.

3. The semi-discrete BKP equation with self-consistent sources

In this part, we will apply the source generation procedure to the bilinear equation (8). We
first change the function τn in (9) into the form

fn = pf1(1, 2, . . . , 2N)n = pf1( • )n, (13)

where the pfaffian entries are defined by

pf1(i, j)n = Cij +
−1∑

k=−∞
[ϕi(k + n + 1)ϕj (k + n) − ϕi(k + n)ϕj (k + n + 1)],

i, j = 1, 2, . . . , 2N.

In the above expression, each function ϕi(m) still satisfies relations (11)–(12), and Cij = −Cji

satisfy

Cij =
{
Ci(y), i < j and j = 2N + 1 − i, 1 � i � K � N,

cij , i < j and j �= 2N + 1 − i,

where each Ci(y) is an arbitrary function of the variable y. Then the function fn will no longer
satisfy equation (8). Following the source generation procedure, we introduce new functions
expressed by

gi,n =
√

Ċi(y)pf1(d0, 1, . . . , î, . . . , 2N)n, i = 1, 2, . . . , K, (14)

hi,n =
√

Ċi(y)pf1(d0, 1, . . . , ˆ2N + 1 − i, . . . , 2N)n, i = 1, 2, . . . , K, (15)
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where the dot denotes the derivative of Ci(y) with respect to the variable y, and the new
pfaffian elements are defined by

pf1(dm, i)n = ϕi(m + n), pf1(dm, dl)n = 0,m, l ∈ Z, 1 � i � 2N.

The functions fn, gj,n and hj,n so-defined will be shown to satisfy the bilinear equations

[(
Dy − D2

x − Dx − 1

2

)
e

1
2 Dn +

1

2
e

3
2 Dn

]
fn • fn = 2

K∑
i=1

sinh
Dn

2
gi,n • hi,n, (16)

(Dx − sinh Dn)gi,n • fn = 0, i = 1, 2, . . . , K, (17)

(Dx − sinh Dn)hi,n • fn = 0, i = 1, 2, . . . , K. (18)

For simplicity of the proof, we set

kj,n = pf1(d0, 1, . . . , ĵ , . . . , 2N)n, 1 � j � 2N.

Then we have the formulae

fn+1 = fn + pf1(d0, d1, • )n, fn−1 = fn − pf1(d−1, d0, • )n, (19)

fn,y =
K∑

i=1

Ċi(y)pf1(1, . . . , î, . . . , ˆ2N + 1 − i, . . . , 2N)n +
1

2
pf1(d−1, d1, • )n

+
1

4
[pf1(d−2, d1, • )n + pf1(d−1, d2, • )n − pf1(d−1, d0, • )n − pf1(d0, d1, • )n], (20)

fn+1,y =
K∑

i=1

Ċi(y)pf1(1, . . . , î, . . . , ˆ2N + 1 − i, . . . , 2N)n

+
K∑

i=1

Ċi(y)pf1(d0, d1, 1, . . . , î, . . . , ˆ2N + 1 − i, . . . , 2N)n

+
1

4
[pf1(d0, d3, • )n + pf1(d−1, d2, • )n − pf1(d1, d2, • )n − pf1(d0, d1, • )n]

+
1

2
pf1(d0, d2, • )n +

1

4
pf1(d0, d1, d−1, d2, • )n, (21)

kj,n+1 = pf1(d1, 1, . . . , ĵ , . . . , 2N)n, kj,n−1 = pf1(d−1, 1, . . . , ĵ , . . . , 2N)n, (22)

∂kj,n

∂x
= 1

2
[kj,n+1 − kj,n−1 − pf1(d−1, d0, d1, 1, . . . , ĵ , . . . , 2N)n]. (23)

Substitution of (19)–(22) into equation (16) comes to the sum of pfaffian identities:

K∑
i=1

Ċi(y)[pf1(d0, d1, 1, . . . , î, . . . , ˆ2N + 1 − i, . . . , 2N)npf1( • )n

− pf1(1, . . . , î, . . . , ˆ2N + 1 − i, . . . , 2N)npf1(d0, d1, • )n

− pf1(d1, 1, . . . , î, . . . , 2N)npf1(d0, 1, . . . , ˆ2N + 1 − i, . . . , • )n

+ pf1(d0, 1, . . . , î, . . . , 2N)npf1(d1, 1, . . . , ˆ2N + 1 − i, . . . , • )n] = 0,

which indicates that fn, gj,n and hj,n saitsfy equation (16). Similarly, by substituting (19) and
(22)–(23) into equations (17) and (18), we get the following pfaffian identity: (1 � j � 2N)
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pf1(d−1, d0, d1, 1, . . . , ĵ , . . . , 2N)npf1( • )n − pf1(d−1, 1, . . . , ĵ , . . . , 2N)npf1(d0, d1, • )n

+ pf1(d0, 1, . . . , ĵ , . . . , 2N)npf1(d−1, d1, • )n

− pf1(d1, 1, . . . , ĵ , . . . , 2N)npf1(d−1, d0, • )n = 0.

Therefore fn, gi,n and hi,n in (13)–(15) are a kind of pfaffian solutions of equations (16)–(18).
Also, equations (16)–(18) construct the bilinear form of equation (7) with self-consistent
sources.

If we apply the dependent variable transformations:

un = ln
fn+1

fn

, φi,n = gi,n

fn

, ψi,n = hi,n

fn

,

equations (16)–(18) are transformed into the nonlinear equations

un+1,y − un,y = un+1,xx + un,xx + (un+1,x + un,x + 1)(un+1,x − un,x) − 1

2
(eun+2−un − eun+1−un−1)

+
K∑

i=1

(φi,n+2ψi,n+1 − φi,n+1ψi,n+2 − φi,n+1ψi,n + φi,nψi,n+1), (24)

∂φi,n

∂x
= 1

2
(φi,n+1 − φi,n−1) eun−un−1 , (25)

∂ψi,n

∂x
= 1

2
(ψi,n+1 − ψi,n−1) eun−un−1 . (26)

4. Bilinear Bäcklund transformation for equations (16)–(18)

The semi-discrete BKPESCS (16)–(18) has a bilinear Bäcklund transformation described
below.

Proposition 1. The coupled system (16)–(18) has the bilinear Bäcklund transformation

(
e

1
2 Dn − λ e− 1

2 Dn
)
gj,n • f ′

n =
(

µj e− 1
2 Dn − µj

λ
e

1
2 Dn

)
fn • g′

j,n, (27)

(
e

1
2 Dn − λ e− 1

2 Dn
)
fn • h′

j,n =
(

µj e− 1
2 Dn − µj

λ
e

1
2 Dn

)
hj,n • f ′

n, (28)

(
Dx +

λ

2
e−Dn − 1

2λ
eDn + θ

)
fn • f ′

n = 0, (29)

(
Dx +

λ

2
e−Dn − 1

2λ
eDn + θ

)
gj,n • g′

j,n = 0, (30)

(
Dx +

λ

2
e−Dn − 1

2λ
eDn + θ

)
hj,n • h′

j,n = 0, (31)

(
2Dy − 2Dx − λDx e−Dn − 1

λ
Dx eDn − λθ e−Dn − θ

λ
eDn − ν

)
fn • f ′

n

= 2
K∑

j=1

(
µj

λ
g′

j,nhj,n − λ

µj

gj,nh
′
j,n

)
, (32)

here λ, θ, ν and µj are arbitrary constants.
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Proof. Let fn, gj,n and hj,n satisfy equations (16)–(18). What we need to prove is that f ′
n, g

′
j,n

and h′
j,n satisfying (27)–(32) are solutions of equations (16)–(18). In fact, from relations

(27)–(32) and the bilinear operator identities in appendix A, we have

P1 =
[(

Dy − D2
x − Dx − 1

2

)
e

1
2 Dn +

1

2
e

3
2 Dn

]
fn • fn − 2

K∑
j=1

sinh
Dn

2
gj,n • hj,n

](
e

1
2 Dnf ′

n • f ′
n

)

−(
e

1
2 Dnfn • fn

)[(
Dy −D2

x − Dx − 1

2

)
e

1
2 Dn+

1

2
e

3
2 Dn

]
f ′

n • f ′
n− 2

K∑
j=1

sinh
Dn

2
g′

j,n • h′
j,n

]

= 2 sinh
Dn

2
[(Dy − Dx)fn • f ′

n] • fnf
′
n − 2Dx cosh

Dn

2
(Dxfn • f ′

n) • fnf
′
n

+ sinh
Dn

2
(eDnfn • f ′

n) • (e−Dnfn • f ′
n)

− 2
K∑

j=1

[(
sinh

Dn

2
gj,n • hj,n

) (
e

1
2 Dnf ′

n • f ′
n

) − (
e

1
2 Dnfn • fn

) (
sinh

Dn

2
g′

j,n • h′
j,n

)]

= 2 sinh
Dn

2
[(Dy − Dx)fn • f ′

n] • fnf
′
n + sinh

Dn

2
(eDnfn • f ′

n) • (e−Dnfn • f ′
n)

− λ sinh
Dn

2
[(Dxfn • f ′

n) • (e−Dnfn • f ′
n) − fnf

′
n • (Dx e−Dnfn • f ′

n)]

+
1

λ
sinh

Dn

2
[(Dxf

′
n • fn) • (e−Dnf ′

n • fn) − fnf
′
n • (Dx e−Dnf ′

n • fn)]

− 2
K∑

j=1

[(
sinh

Dn

2
gj,n • hj,n

) (
e

1
2 Dnf ′

n • f ′
n

) − (
e

1
2 Dnfn • fn

) (
sinh

Dn

2
g′

j,n • h′
j,n

)]

= sinh
Dn

2

[(
2Dy − 2Dx − λDx e−Dn − 1

λ
Dx eDn − λθ e−Dn − θ

λ
eDn

)
fn • f ′

n

]
• fnf

′
n

+
K∑

j=1

µj

λ

[(
e

1
2 Dnfn • g′

j,n

)(
e− 1

2 Dnhj,n • f ′
n − (

e− 1
2 Dnfn • g′

j,n

)(
e

1
2 Dnhj,n • f ′

n

)]

+
K∑

j=1

λ

µj

[(
e

1
2 Dngj,n • f ′

n

)(
e− 1

2 Dnfn • h′
j,n

) − (
e− 1

2 Dngj,n • f ′
n

)(
e

1
2 Dnfn • h′

j,n

)]

= sinh
Dn

2

[(
2Dy − 2Dx − λDx e−Dn − 1

λ
Dx eDn − λθ e−Dn − θ

λ
eDn

)
fn • f ′

n

+ 2

(
λ

µj

gj,nh
′
j,n − µj

λ
g′

j,nhj,n

)]
• fnf

′
n = ν sinh

Dn

2
fnf

′
n • fnf

′
n = 0,

P2 = [(Dx − sinh Dn)gi,n • fn]g′
j,nf

′
n − gj,nfn[(Dx − sinh Dn)g

′
i,n • f ′

n]

= (Dxgj,n • g′
j,n)fnf

′
n − gj,ng

′
j,n(Dxfn • f ′

n) − sinh
Dn

2

(
e

1
2 Dngj,n • f ′

n

)
•
(
e− 1

2 Dnfn • g′
j,n

)

+ sinh
Dn

2

(
e

1
2 Dnfn • g′

j,n

)
•
(
e− 1

2 Dngj,n • f ′
n

)
= (Dxgj,n • g′

j,n)fnf
′
n − gj,ng

′
j,n(Dxfn • f ′

n)

− sinh
Dn

2

[
λ e− 1

2 Dngj,n • f ′
n − µj

λ
e

1
2 Dnfn • g′

j,n

]
•
(
e− 1

2 Dnfn • g′
j,n

)
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+ sinh
Dn

2

(
e

1
2 Dnfn • g′

j,n

)
•

[
1

λ
e

1
2 Dngj,n • f ′

n − µj

λ
e− 1

2 Dnfn • g′
j,n

]

= (Dxgj,n • g′
j,n)fnf

′
n − gj,ng

′
j,n(Dxfn • f ′

n)

− λ

2
[gj,ng

′
j,n(e

−Dnfn • f ′
n) − (e−Dngj,n • g′

j,n)fnf
′
n]

+
1

2λ
[gj,ng

′
j,n(e

Dnfn • f ′
n) − (eDngj,n • g′

j,n)fnf
′
n]

= θgj,ng
′
j,nfnf

′
n − θfnf

′
ngj,ng

′
j,n = 0.

The above results indicate that f ′
n, g

′
j,n and h′

j,n satisfy equations (16)–(17). Much in the same
way, we can show that equation (18) holds for f ′

n and h′
j,n. Hence we have completed the

proof of the proposition. �

5. Conclusion and discussions

In this paper, we gave a pfaffian solution of the semi-discrete BKP-type equation (1) firstly.
Then we have constructed and solved the semi-discrete BKP-type equation with self-consistent
sources through the source generation procedure. When the coupled system has K pairs of
sources, we can obtain its N-soliton (N � K) pfaffian solutions. If we set each Ci(y) to
be constant, the sources gi,n and hi,n in (14)–(15) become zero, and equations (16)–(18)
are reduced to equation (8). Accordingly, fn in (13) is reduced to the pfaffian solution of
equation (2). Finally, we have given the bilinear Bäcklund transformation for the semi-discrete
BKP-type equation with self-consistent sources, which can further explain the integrability
of the coupled system. Here it should be noted that we have only given the soliton solutions
of the semi-discrete BKP ESCS, on the other hand, some soliton equations and SESCSs,
for example, the well-known KdV equation and KdV ESCS, have various solutions except
for soliton type, such as complexiton, negaton and positon [25]–[27]. So we hope that more
different kinds of solutions of this BKP-type ESCS can be derived, and this work is in progress.
In addition, the new ’source generation procedure’ can also be applied to the fully discrete
BKP-type equations. This work will be reported in the future.
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Appendix. Hirota’s bilinear operator identities

The following bilinear operator identities hold for arbitrary functions a, b, c, and d:

(Dxa • b)cd − ab(Dxc • d) = (Dxa • c)bd − ac(Dxb • d), (A.1)

sinh(δDn)a • a = 0, Dt cosh(δDn)a • a = 0, (A.2)

(eDna • b)cd − ab(eDnc • d) = 2 sinh
Dn

2

(
e

1
2 Dna • d

)
•
(
e− 1

2 Dnb • c
)
, (A.3)

(
Dy e

1
2 δDx a • a

)(
e

1
2 δDx b • b

) − (
e

1
2 δDx a • a

)(
Dy e

1
2 δDx b • b

) = 2 sinh
δDx

2
(Dya • b) • ab, (A.4)
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(
D2

y e
1
2 Dna • a

)(
e

1
2 Dnb • b

) − (
e

1
2 Dna • a

)(
D2

y e
1
2 Dnb • b

) = 2Dy cosh
Dn

2
(Dya • b) • ab, (A.5)

(
e

3
2 Dna • a

)(
e

1
2 Dnb • b

) − (
e

1
2 Dna • a

)(
e

3
2 Dnb • b

) = 2 sinh
Dn

2

(
eDna • b

)
• (e−Dna • b), (A.6)

Dy cosh
Dn

2
(e−Dna • b) • ab =−sinh

Dn

2
[(Dya • b) • (e−Dna • b)− ab • (Dy e−Dna • b)],

(A.7)

2Dx cosh
Dn

2
(e−Dna • b) • cd = e− 1

2 Dn[(Dxa • d) • (e−Dnc • b) − ad • (Dx e−Dnc • b)]

+ (Dx e−Dna • d) • cb − (e−Dna • d) • (Dxc • b). (A.8)
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[10] Xiao T and Zeng Y B 2006 Bäcklund transformations for the constrained dispersionless hierarchies and

dispersionless hierarchies with self-consistent sources Inverse Problems 22 869–80
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